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‘ Abstract / 54 ;Z

The longitudinal drift velocity of a particle
trapped in the earth's field is considered. It is shown
that there is a relation between drift velocities at dif-
ferent points on any line of force and that the drift
velocities of particles with differing mirror points are
alsc related. These relations can be used to simplify

the calculation of the average effects of the atmosphere.
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Introduction

Newkirk and Walt (1964) have shown that the longitudinal drift
velocity, of trapped particles moving in the earth's field, varies
appreciably with latitude and longitude. The calculation of drift
velocity is important in calculating the effects of the atmosphere
on the particles. In this paper it is shown that the drift velocity of
a particle with a given mirror point, is related in a simple way to
the drift velocity at the equator. The drift velocities at the equator
for particles with different mirror points, are also related; the
relation is given in terms of known functions. These results consider-
ably simplify the integrations which are necessary to computeAaverage
effects of the atmosphere.

Ray (1963), Northrop and Teller (1960) and others, have made use
of a coordinate representafion (¢, 8) in which B = 6 o3 x‘; B. It is
shown that the drift velocity results imply a convenient representation
of o and 8. If o is taken to be J, where J is the usual integral
invariant, then B is related to the time it takes for a particle to

drift in longitude.

Drift Velocity Calculations for Fixed Bn

A formula for the instantaneous drift velocity has been given by

various authors. Lew (1961) shows that in a curl free field

- InYen -
v. = €B Kl/e v‘_2+ i 2)% (1)



where mY is the mass of the particle and e is its charge: Vi and Y?
are the components of v (the velocity) perpendicular to and parallel
to the line of force: b is a unit vector along the binormal to tpe

ke

magnetic field line. We will use the convention that if x 1s any vector

/

then x

Figure 1. Two neighboring lines of force AB, CD and

the associated particle paths AB' and CD'

denotes the magnitude of x. Northrop and Teller (1960) show that

equation (1) can be integrated over a latitudinal bounce to give

- e -
u, = vV JxB
d
eBgT (2)
where Ed is Va averaged over one bounce, and T 1s the bounce period.




J is the integral invariant

J = j‘p// ds (3)
where ds is en arc length along the line of force, and %7 is the
compenent of the momentum along the line of force. Newkirk and Walt
(1964) have used formula (2) to compute Ed at various iongitudes for
various values of Bm’ the mirror point B.

It hes been pointed out by McIlwain (private communication) that
there is a relation between Ed at various points on the line of force.
Suppose the particle is at point A at time zero. AB denotes the line
of force through A (See Figure 1). The particle drifts away from the
line of force, let AB' denote the actual path of the particlé: the
difference between AB and AB' represents the effects of instantaneous
drift. After several bounce periods let the particle reach point C, by
definition

Ed (A) = ac/T (ac) (&%)

where T (AC) denotes the time to go from A to C. Let CD denote the line
of force through C and let CD' be the path of the particle. Consider
the same particle at different a point on its path. Let P' be any point
on AB' and let Q' be the corresponding point (the point with the same

B value) on CD', then

uy (B = P'Q'/ (rac) - 20a2) + 26y ) (5)



We now make two approximations, namely

PQ = P'Q' (6a)
and

T(AC) = T(AC) — T(AP') + T(CQ') (6b)

From equations (4) through (6)

B L e
_@?T— —5 (7)

that 1s, the drift velocity at any point is proportional to the spread .
of the lines of force. This is the main result of this section. We

have made two approximations, (6a) and (6b), but in addition T(AC) should
be short enough so that Uy does not change during the period T(AC). Now
the drift period is much longer than the bounce period, hence we can

make T(AC) >> T(AB) without any loss of accuracy, thus (6a) and (6b) are

accurate to second order.
3

To illustrate these results consider a particular line oi\ force;
in any results relating to the earth's field we have used the Jensen
and Cain (1962) 48 term spherical harmonic expansion. The geographic
coordinates of points on two neighboring lines of force with L = 1.25 are

shown in Table 1.




TASLE 1
R 6 ) B
Point 2 1.114219 2.086164 5.1k0538 0.19732
B 1.159360 1.622298 5.13u288 0.19732
c 1.093869 2.088672 5.335743 0.19732
D 1.151725 1.612954 5.276995  0.19732

Where R is in earth radii and 6, ? are in radians. We find that

ug (A) AC = .188208 = 1.140
u (B) D 165111

It is sometimes convenient to use P the angular drift velocity; project-
ing equation (T) along the direction dQ gives

A = d (c) -4 (a) = .195205 = 1.368
—-LLL& o NOESRONME -t

This checks with the results given by Newkirk and Walt (1964) in
their plots of é against ¢. The difference between @ at the northern
and southern ends of the line of force is due to two factors; One
factor is the spread of the lines of forge. The ofher factor is the
change in dx/d@ where dx is a distance measured in the direction AC.
Welch, et al, (1963) have a graph. of the variation of mirror point
height as § is varied: the slope of this graph is approximately dx/d¢.
This graph shows that dx/d¢ can differ appreciably from the northerg

to the southern mirror point.



A Canonical Coordinate System

Ray (1963) has discussed a coordinate system (@, B) such that

5 -0, %V, (8)
and such that @ and B are constant along a line of force. Northrop
and Teller (1960) used this coordinate system in deriving an expression
for the drift velocity. Ray (1963) showed that any function which
is constant along a line of force may be thosen as @, and that B is

then determined. If Y is any other quantity which is constant along

a line of force then

| Vo* ¥

where the path of integration in the direction B X Var’ Consider the

Dath of integration and let dX denote an element of this path then

8 = B 4y ; ‘.__ B _ax (10a

I |V, | avlax I | V! )

~or L&- = _LVQ’.L (lOb)
ap B

Let us now choose & to be equal to J for a fixed Bm' Then dX denotes a
distance in the direction B X Va’ that 1s it is in the direction of

average drift. Using equation (2), and the fact that \/J is perpendi-
cular to 'ﬁ,

= - eyt (10¢)
C




Since 2 is constant along a line of force, this eguation is similar to
tre result derived in the preceeding section. u.T Is proportional to

.

GAX and dX is the separation of the lines of force measured in the direc-

tion B X V/J. It is possible to give a meaning to B; since the drift

velocity is dX/dt, it follows that

é3 _ ¢ .
at ~  eT (11)

so that B is the time taken to drift from some reference line, measured
in units of eT/c. The definition (10b) is exact; it does not contain any
approximation. This analysis shows that there are an infinite number of
o, coordinate systems., Particles with different values of Bm lie on
different shells; the above results show that there is a coordinate Sys~
tem appropriate to each value of Bm' On any shell, if Bm is taken to
nave the value h.BSM/IS, where M is the dipole magnetic moment of the
earth, then I is equal to the L defined by McIlwain (1961). 1In the
neighborhood of any shell we can choose the coordinates so that @ = L;
however, this agreement does not hold for other shells since Bm must be

kXept constant.

The Drift Velocity and Calculation of an Average Atmosphere

Consider a particle with a certain value of Bm and a certain
energy. It is known that the particle will, if scattering and loss pro-
cesses are ignored, stay on & certain shell which is defined by Bm and
by J, the integral invariant. Let p(E) be some preperty of the atmos-

phere, for example p might be the concentration of oxygen at T. The



average of p as seen by a trapped particle is

O
1}

av

s(p) /s (1) (12a)

where s(e) = JJ‘E.ﬁElJE?Jﬁé (12p)
V1

We have shown in the previous section that d ¢ / ¢ is independent of s,

hence S{p) is separable

s (p) = [ S(ef)dg (13)
¢

where s (p,8) = [ ‘pvij) ds¢ ‘ (14)

The subscript ¢ on ds denotes that integration is along the line of force
with label $. When evaluating (13), 4 ¢ / 5 can be taken at any point on
the line of force; a convenient point to use is the geomagnetic equator.
The numerical calculation of p can be performed as follows:- Choose many
lines of force. Evaluate the integral}of equation (14) for each line of
force. Find the geomagnetic equator on each line of force and the angu-

lar drift velocity at that point. Finally, perform the integration (13).

Relation between Drift Velocities with Different Bm

We have shown that the average drift velocity at any point is
related, in a simple geometrical fashion, to the drift velocity at the

equator. It would therefore be advantageous to be able to compute Uy at




.he equator in a simple fashion. For particles which mirror at the

ecuator we have from equation (1)

2
<k M (15)

- L mycnyv
Uy = Vg © 2 e

[ev] B

where # is the curvature of the line of force.
The best way of computing » is to use the relation given by Lew
(1961). 1If e and n denote unit vectors along the tangent and normal,

then

which, at the equator reduced to

rad B 7
Ig 5 (16)

We can compare equation (2) and equation (13) for particles mirroring

near the equator. For points near the equator let

: 2
B 2 2 2 a8
B = B°:+ a” s where a = 5;—;5— (17)

and B, is B at the equator. Let Sm denote the distance to the mirror

point, then

2.2
By = Bo* a" s , (18)

The bounce time for the particles is

T e fosm ds/(l"' -—BE—FI

\'s m
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putting s = sin € reduces the integral to a simple form and

T = —— V3B (19)

Applying the same transformation to J gives

[

S Z
g = bpf "o - B/B.) ds (20a)
_ TP Bm- Bo _ T pv (L - BO (20b)
Y N B - 2 B
m m

hence differentiating with Bm fixed

_ —Topopvw bV - )
Vs - 28 Vs, + 25_ (B, - B, )V T (21)

putting Bm = BO for particles at the equator,

. ; . U - c PY g = —¥ pcn

which is identical with (15).

To compute the drift velocity at the equator, of particles which
do not mirror at the equator, e can proceed as follows: McIlwain (1961)
has shown that a certain gquantity, which he calls L, is almost constant
along a line of force, and that there is a relation between J and B,
namely,

38 = F (I3 (22)
M M

where I =J / 2p, M is the dipole moment of the Earth and F is a function

given by McIlwain.
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the ecuator
L = (%/B) (23)

Tae implication of equations (22) and (23) is that if we know B,
then we can find L, and assuming L is constant along the line of force,
ve can find I for any point on the line of force, thus I is the solution

of the equation

Bm=F(.LBm\ (24)

To find ‘7 I we could proceed as follows: Find I for the equatorial
value B, find I for equatorial value B_ + h V B, then {/ I is the
cifference of the I's divided by h. Actually it is not necessary to do
this calculation because the ratio of ‘7 I at one Bm value to thé ratio
of ‘7 I at another Bm value is almost independent of longitude. We can
see this as follows. For a given Bml take two shells with integral
invariants i and I + 6 I. ‘7 I at any point is proportional to the
separation of these two shells. Consider a line of force on the I shells,
take a particle whose mirror point B value is equal to Bmz’ evaluate 1its
integral invariant and denote the result by I*¥. Take a similar line on
the I + &6 I shells, denote the result by I¥ + 6§ I¥*. The |/ I for the
second particle is proportional to the separation of the shells I¥ and
I* + 6 I¥., The shells I and I¥* coincide at one line of force, we assume
that they will coincide at all lines of force; similarly, for the

‘I + 6 Iand I¥ + & I* shells. Thus \/ I for the second particle is pro-

portional to the separation of I* and I* + 6 I¥, which is the same as the
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separation of I and I + § I, and this is proportional to :7 I Tfor the

first particle, thus

Vi, / _
ml VI, - a constant (25)

We have made the assumption that shells which coincide along one line

of force will always coincide. We could have taken the alternative

assumption that L is constant along a line of force; this actually leads

to a similar result. For fixed Bm let us write (24) in the form

'Bo = f (I) (26a)
and let
B,+h VB, = £(I+38I)=£(1)+061¢ (I) (26p)
then
-5 S VA -
Vi = 55— = 779 (27)
Using McIlvain's equation (7) we find
-B VB S
VIs—g—7a (28)
B, G (B, — B,)
where
6
G = 3Zna 2ot
1

and & and x are defined by McIlwain. For points near the egquator s

through ag are zero and a, = .333338. (We use the improved values of
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eIlvein's coefficients as given the report by Tudziak et al. (1963);
rorce using equation (20)

~ Bmg7 s T pv
Vi=22Vi=—-7 5o (29)
(¢} m

Equation (25) checks with equation (19) at the equator: equation (28)
srould be valid for all B . Collecting together equations (2), (28),

(15) ard (16), the drift at the equator is

LIB

Jeid

u(8) = m sy (B (30)

where ud(B) refers to particles mirroring at the point B.

For many calculations we are only inte.:zsted in the
variation of u with ¢ where I, v and B are fixed: from equation (30)
considered as a function of ¢

u~(Bo)
(B.) = a constant times < (31)
i (B-B) T

m O

wnere T is the bounce period. For particles which mirror near the
equator, equation (20) shows that T(Bm-— Bo),is constant; for higher
values of B it can be shown that T(Bm-— Bo) will vary with longitude.

The results are illustrated in Figure 2. One curve represents ¢

for a particle mirroring at the geomagnetic equator; the particular

equator considered here has B = .1596 gauss, that is L = 1.25. This first

curve was computed from equations (15) srd (16, and has been normalized

'so that its average value is unity.
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The second curve represents the ratio
£(8) = v (B)&T/uy (B) I

normalized to an average value of unity. ud(Bm) was evaluated at the
geomagnetic equator using the equation (2): Bm was‘taken as .22 gauss
(corresponding to a minimum height of 250 km) and B° was .1596 gauss.
Since B and B were held fixed, I varies by about 2% as ¢ was varied.
According to equation (30), the ratio £f( ¢ ) should be constant., It
can be seen that f varies by less than 2%. For this value of L and
Bm, the drift at the mirror point varies from .8 to 1.2 times its aver-
age value. .

A similar calculationfor the L =1.9, with Bm agaln equal to .22,

gave £ ( ¢ ) varying from .986 to 1.016 times its averagevvalue.

Conclusion

There are three conclusions. the average drift velocity varies

Y3
along a line of force, the variation 1s proportional to the spatial sepa~-

ration of lines in the same J shell. wu, at the geomagretvic equator

d

varies when Bm, the mirror point B, is varied; however, the ratio of
ud's for two values of Bm is almost independent of changes in longitude.

These relations among the u.'s make it possible to compute u, at any

d a
Point by a relatively simple calculation; they also considerably simplify

the calculation of average atmospheres.
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Firure Capoioncg

Fizure 1. Two neighboring lines of force AB, CD and the associated
particle paths AB' and CD' ,i{2ui3.16M |

Figure 2. Angular drift at the equator for a particle with 1 = 1.25,
compared with the ratio of (drift at the equator of particle
with B = .22) / (drift of particle with B, =_Bo). Both

curves are normalized to an average value of unity.
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